Awodi J.O 2011: The geotechnical and geological investigation of the August, 2007 landslide on mount Patti, North Central Nigeria. M.Sc thesis, University of Benin, Nigeria.
Bishop C, 2006: Pattern Recognition and Machine Learning, Springer Breiman, L., 2001: Random Forests, Machine Learning, 45:5–32.
Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
Galli M., Ardizzone F., Cardinali M., Guzzetti F., Reichenbach P., 2008: Comparing landslide inventory maps, Geomorphology 94:268–289. Guzzetti F, Paola R, Ardizzone F, Cardinali M, Galli M (2006) Estimating the quality of landslide susceptibility models. Geomorphology 81:166–184. https://doi.org/10.1016/j.geomorph.2006.04.007 [CrossRef]
Hastie T., Tibshirani R., Friedman J., 2011: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer, New York.
James G., Witten D., Hastie T., Tibshirani R., 2013: An Introduction to Statistical Learning, Springer, New York.
Kevin P. Murphy (2007) “Machine Learning: A probabilistic Perspective” 1-2.
Krkac M, S ˇ poljaric´ D, Bernat Gazibara S, Mihalic´ Arbanas S(2016) Method for prediction of landslide movements based onrandom forests. Landslides. https://doi.org/10.1007/s10346-016- 0761-z
LeCun Y., Bengio Y., Hinton G., 2015: Deep Learning, Nature, 521:436-444
Mazzanti, P., Caporossi, P., Muzi, R., 2020: Sliding Time Master Digital Image Correlation Analyses of CubeSat Images for landslide Monitoring: The Rattlesnake Hills Landslide (USA). Remote Sensing 12, 592. https://doi.org/10.3390/rs12040592. Accessed: 21 May 2022
Murphy K., 2012: Machine Learning: A Probabilistic Perspective, MIT Press, Cambridge, MA.
Omada J.I and Awodi J.O, 2009. The Geologic setting, physico-chemical characteristics and utilization scheme of spring water at Patti ridge, Lokoja, Central Nigeria. Global Jour. Of Geol. Sciences Vol.7 No 1, pp 27-32.Nigeria.
R. Nishant, M. Kennedy, J. Corbett Artificial intelligence for sustainability: challenges, opportunities, and a research agenda Int. J. Inf. Manage., 53 (2020), Article 102104 ArticleDownload PDFView Record in ScopusGoogle Scholar.
Shin H.C., Roth H., Gao M., Lu L., Xu Z., Nogues I., Yao J., Mollura D., Summers R.,, 2016: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning, IEEE Transactions on Medical Imaging 35:1285–1298.
Y. Duan, J.S. Edwards, Y.K. Dwivedi Artificial intelligence for decision making in the era of Big Data–evolution, challenges and research agenda Int. J. Inf. Manage., 48 (2019), pp. 63-71 ArticleDownload PDFGoogle Scholar.
Yordanov V. L. Biagi, X.Q. Truong, V.A. Tran, M.A. Brovelli An overview of geoinformatics state-of-the-art techniques for landslide monitoring and mapping. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-4/W2-2021